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ABSTRACT
Weeds are recognized as the most aggressive, troublesome, and competitive elements within croplands. Climate change may
affect the geographical distribution of existing weeds or the invasion of weeds in new areas. Therefore, in the current study,
modelling was carried out to explore and predict the invasion potential of Trianthema portulacastrum and Ageratum
conyzoides in India under current as well as future climatic conditions. Future climatic scenarios under Representative
Concentration Pathways (RCPs) 4.5 and 8.5 for the years 2050 and 2070 were considered and modelling was performed
using regression techniques and machine learning approaches with Ensemble technique. Mutually least correlated eight
bioclimatic variables along with soil and elevation data were used for the modelling over 375 and 379 occurrence locations
of the T. portulacastrum and A. conyzoides, respectively. True Skill Statistic (TSS) was used to evaluate the models’
predictive performance, while AUC of the ROC and Kappa were used to crosscheck their performance. Results revealed
that Ensemble model outperformed the individual models for both the species with higher AUC, TSS and Kappa values.
Bioclimatic variables such as temperature seasonality, annual mean temperature, and minimum temperature of the coldest
month were found to govern the potential distribution of both the species. Results of potential distribution were obtained
in four climate suitability classes: not suitable (0-0.2), low (0.2-0.4), moderately (0.4-0.6), and highly suitable (>0.6).
Modelling suggests the expansion of suitable ranges of T. portulacastrum in India under future climatic scenarios, whilst A.
conyzoides are expected to predominantly contract in the future.

Keywords: Bioclimatic variables, Ensemble modelling, Machine learning, Potential distribution, Species distribution
modelling
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INTRODUCTION
Weeds are regarded as the most damaging

biotic constraint to agricultural production, in addition
to threatening agro-biodiversity and natural water
bodies. Weeds compete for primary resources such
as light, water, nutrients and space that limit the
agricultural production and cause huge yield and
economic losses. It is estimated that weeds reduce
crop yields by 31.5% (22.7% in winter and 36.5% in
summer and rainy seasons) in India (Bhan et al.
1999). It is estimated to cause an economic loss of
about USD 11 billion in 10 major field crops in India
due to weeds (Gharde et al. 2018, 2019).

The introduction of alien invasive species poses
a serious threat to native biodiversity, ecosystem
integrity, and agricultural productivity, resulting in

significant economic consequences (Rai and Singh
2020). Invasive species disrupt trophic balance and
reduce species resilience. Furthermore, global climate
change increases the risk of alien and invasive plant
species while also expanding their range. Previous
research has found that many alien and invasive
species have characteristics that increase invasion
success and allow them to easily adapt to climate
change (Priyanka and Joshi 2013; Banerjee et al.
2017).

Climate change may be the driver for global
range expansions (migration or introduction into new
areas), and changes in life cycles of species. Weed
migration may result in a difference in the structure
and composition of weed communities in natural and
managed ecosystems (Ramesh et al. 2017).
Identifying possible habitats integrating changing
climate scenarios is an effective strategy for reducing
the spread of invasive plant species.  Species
distribution models (SDMs) are the most commonly
utilised tool for investigating the effects of climate
change on distributions (Gharde et al. 2023). SDMs
anticipate the distributions of given species based on
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abiotic factors such as environmental data, making it
primarily a tool for predicting the fate of a species in
the future in terms of ecology and conservation.
These models also aid in understanding existing and
potential relationships between species, organisms,
environmental conditions, and area richness (Elith et
al. 2006). SDMs are an evolved version of the
predictive habitat distribution models (Guisan and
Zimmermann 2000).

Among alien invasive weeds (AIWs), species
such as Trianthema portulacastrum and Ageratum
conyzoides have posed serious threats to biodiversity
in the country. Both weeds are native to Africa and are
considered troublesome weeds in cultivated crops. T.
portulacastrum also known as horse purslane, is an
annual broadleaf weed belonging to the Aizoaceae
family and is a widely distributed weed in mustard,
corn, pigeon pea, soybean, tomato, potato, onion,
cotton, sugarcane, pearl millet, sorghum, maize,
direct-seeded rice, summer and rainy season pulses,
oilseed crops, fodder crops, vegetables and
horticultural crops in India. This weed is said to be a
strong competitor, reducing mungbean yield by 50-
60% when left untreated (Kaur et al. 2017; Aggarwal
et al. 2017). It is also responsible for significant
losses in maize, soybean, and peanut yield. Its extract
has an allelopathic effect on soybean seed
germination, seedling vigour, and productivity.

Ageratum conyzoides, called Billygoat weed, is
an annual broad-leaf weed belonging to the family
Asteraceae. It reduces yields in major staple crops
such as wheat, corn and rice in India (Kohli et al.
2006; Batish et al. 2006; Kaur et al. 2012). It also
infiltrates rangeland areas, where it outcompetes
native grasses, resulting in a lack of fodder. Its
growth strategies, which include rapid growth rates,
short life cycles, increased reproductive potential,
high competitive abilities, and allelopathy, make it a
successful invader of native habitat (Kohli et al. 2006;
Batish et al. 2006; Singh et al. 2012).

Considering the negative impact of these two
weeds on the performance of different crops in terms
of yield and economics, the proposed work aims to
study the current geographical distribution of T.
portulacastrum and A. conyzoides and to predict the
future expansion/contraction of the species under
RCP 4.5 and 8.5 for the years 2050 and 2070 using
Ensemble -modelling approach. The study will be
helpful to the researchers in identifying the potential
areas of invasion for the species and accordingly, plan
the strategies for the prevention of these species in
newer areas.

MATERIALS  AND  METHODS

Data collection
The study was conducted during the year 2023

at ICAR-Directorate of Weed Research, Jabalpur. For
the study, occurrence data for T. portulacastrum and
A. conyzoides were obtained from various sources,
including India Biodiversity Portal (https://
indiabiodiversity.org/); Global Biodiversity
Information Facility GBIF (https://www.gbif.org/);
Centre for Agriculture and Bioscience International
CABI (https://www.cabi.org); Flora of Peninsular
India, Herbarium JCB, Centre for Ecological
Sciences, Indian Institute of Sciences, Bengaluru
(http://flora-peninsula-indica.ces.iisc.ac.in/) and
https://www.inaturalist.org/. Occurrence records
acquired from Annual Reports of the All India
Coordinated Research Project on Weed Management
and ICAR-Directorate of Weed Research (DWR)
(2010-2022), Weed Atlas, Vol. I and II published in
2008 by the ICAR-DWR were also included.
However, overlapping occurrence points were
removed before analysing the data. Altogether 375
occurrence points of T. portulacastrum and 379
occurrence points of A. conyzoides were considered
for the study.

Climatic variables
Climatic variables (often called bioclimatic data

primarily used for ecological applications) namely
bio1 through bio19 with a resolution of 30 arc
seconds were downloaded from the website
www.worldclim.org for current and two future
climate periods, e.g. 2050 (2041-2060 average) and
2070 (2061-2080 average) under Representative
Concentration Pathways (RCP) 4.5 and 8.5. As these
files were in tiff format, QGIS-v3.22.7 software was
used to convert them to ASCII (American Standard
Code for Information Interchange) format. Elevation
data from the Shuttle Radar Topography Mission
(SRTM) and soil layers from www.worldclim.org
and OpenLandMap.org, respectively, were also
considered for the study that influenced the
distribution of species. The soil layer’s resolution was
set to 30 arc seconds and converted to ASCII format
before the analysis.

RCP 4.5 denotes the average/moderate GHG
emission pathway, whereas RCP 8.5 denotes the
greatest GHG concentration pathway (IPCC 2014;
Thapa et al. 2018). The RCP 4.5 model predicts a
steady increase in radiative forcing with projected
global mean surface temperatures ranging from
1.4°C to 1.8°C, whereas the RCP 8.5 model assumes
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the greatest increase in radiative forcing with
projected global mean surface temperatures ranging
from 2.0°C to 3.7°C. Future climate data under RCP
4.5 and 8.5 for the years 2050 and 2070 under the
model cccma_canes2 was used for modelling.

Data pre-processing
Duplicate records of the occurrence data of T.

portulacastrum and A. conyzoides were omitted using
the conditional formatting function available in MS
Excel and finally, 375 occurrence points of T.
portulacastrum and 379 points of A. conyzoides were
retained for model building and validation for the
species distribution modelling. Predictor variables
from bio1 through bio19 were tested for
multicollinearity using correlogram. Out of 19
bioclimatic variables, strongly associated bioclimatic
variables with Pearson correlation coefficient values
>0.8 and <-0.8 were eliminated from the analysis,
leaving eight variables with the least mutual
association across the study area. With this criteria, 8
bioclimatic variables, as well as the elevation layer and
soil layer, were retained for model development and
validation. Thus, selected climatic variables are bio 1
(Annual Mean Temperature), bio 4 (Temperature
Seasonality (standard deviation *100)), bio 5
(Maximum Temperature of Warmest Month), bio 6
(Minimum Temperature of Coldest Month), bio 9
(Mean Temperature of Driest Quarter), bio 10 (Mean
Temperature of Warmest Quarter), bio 12 (Annual
Precipitation), bio 14 (Precipitation of Driest Month).

Raster layers of environmental variables were
trimmed to get the study region’s (India) spatial range
(latitudes 8°42  N and 37°6' N, and longitudes 68°7' E
and 97°25' E, with a total area of 3,287,263 km2).
Maps in Figure 1 and 2 depict the occurrence points
of T. portulacastrum and A. conyzoides in the study
region of India, respectively.

Model fitting, calibration and validation
The geographical distribution of T.

portulacastrum and A. conyzoides was obtained with
the BIOMOD2 package available in R. Unlike the
single model technique, BIOMOD2 incorporates an
Ensemble modelling algorithm and is thought to
produce higher accuracy. Ensemble modelling is a
process where multiple diverse models are generated
to predict an outcome, by using many
different modelling algorithms. The Ensemble model
then integrates the prediction of each base model and
results in one final prediction. The purpose of using
Ensemble models is to minimize the generalization
error of the prediction. 

For generating the Ensemble model, five
algorithms from the BIOMOD2 package in R were
used. These include two regression approaches
(Generalised Linear Model (GLM), Multivariate
Adaptive Regression Splines (MARS)) and three
machine learning methods (Maximum Entropy
(MaxEnt); Artificial Neural Network (ANN) and
Random Forest (RF)).

Figure 1. Map depicting the occurrence points of T.
portulacastrum in the study region

Figure 2. Map depicting the occurrence points of A.
conyzoides in the study region
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Similar to species presence points, absence
points are regarded as valuable data in SDM. SDM
algorithms and model assessment procedures
consider missing data to be an essential factor.
Because there were no actual absence points rather
pseudo-absence points were constructed within the
model using a random technique. Based on the
BIOMOD2 package’s guidance, three times as many
presence points were generated as pseudo absence
points for modelling the weeds T. portulacastrum and
A. conyzoides. The data was divided into two sets:
75% of the data was utilized for the calibration
procedure, and the remaining 25% was used as
testing data set. A ten-fold cross-validation strategy
was used to lower the uncertainty in the response
curves and occurrence predictions. The method
involves dividing the occurrence data into 10 equal-
size groups, or “folds,” at random. Models are then
created by excluding each fold in turn, with the left-
out fold being used for model validation. It uses all of
the data for validation as a result. The predicted
probability layers were then averaged to get the final
model output.

Model evaluation
There are different ways for assessing the

model’s predicted performance. For evaluation, many
researchers employed Area under Receiver Operating
Characteristic (ROC) curve (AUC) and True Skill
Statistic (TSS). Both methods can be used alone, but
it is best to employ them all for cross-comparisons.
Here, TSS was used to evaluate model predictive
performance, while AUC of the ROC and Kappa were
utilised to crosscheck model predictive performance.
Models with AUC > 0.7, TSS > 0.4 and Kappa > 0.4
were used for building the Ensemble model.

The area under ROC curve (AUC) indicates the
degree or measure of separability, whereas ROC is a
probability curve between the True positive rate
(TPR) and False positive rate (FPR). It takes values
from 0 to 1, where a value of 0 indicates a perfectly
inaccurate test and a value of 1 reflects a perfectly
accurate test. In general, an AUC of 0.5 suggests no
discrimination, 0.7 to 0.8 is considered acceptable,
0.8 to 0.9 is considered excellent, and more than 0.9
is considered outstanding.

True Skill Statistic (TSS) describes the ability of
a model to correctly classify presence and
background data. TSS > 0.8 excellent; 0.6 <TSS <
0.8 good; 0.4 < TSS < 0.6 fair; 0.2 < TSS < 0.4 poor;
and TSS < 0.2 no predictive ability.

The Kappa statistic is frequently used to test
interrater reliability. The importance of interrater

reliability lies in the fact that it represents the extent to
which the data collected in the study are correct
representations of the variables measured. It ranges
from -1 to 1. Values d” 0 as indicating no agreement
and 0 - 0.20 as none to slight, 0.21–0.40 as fair, 0.41–
0.60 as moderate, 0.61–0.80 as substantial, and 0.81–
1.00 as almost perfect agreement.

Using TSS scores as a cut-off value, maps
depicting the probabilities of suitable and unsuitable
areas of current and future distribution of T.
portulacastrum and A. conyzoides was obtained and
prepared in four classes of climate suitability i.e., not
suitable (0-0.2), low (0.2-0.4), moderately (0.4-0.6)
and highly suitable (>0.6) categories.

Apart from this, the permutation approach was
used to analyse the relative influence of each climate
variable on the distribution of selected plant species.
To demonstrate the relationship between the
probabilities of occurrence for a species with varying
values of environmental variables, response curves
were also created. One environmental variable is
simulated for each plot, with the remaining
environmental variables kept constant at their mean.

The biomod range size function in the
BIOMOD2 package was used to visualise and
measure the range change of the target plant species
under future climatic circumstances. The function
offers a summary statistic on species range change.
“Percentage loss” (i.e., the percentage of currently
suitable areas predicted to be lost, calculated as [loss/
(loss + stable)]; “percentage gain” ( i.e., the
percentage of new habitats predicted to be suitable
when compared to the species’ current distribution
size, calculated as [gain/ (gain + stable)]; and “range
change,” i.e., the overall output of predictions,
calculated as (percentage gain-percentage loss).

RESULTS  AND  DISCUSSION

Variable selection
In Figure 3, the correlations for all pairs of

variables are represented by the correlogram. Positive
correlations are shown in blue, while negative
correlations are shown in red. The intensity of the
colour is proportional to the correlation coefficient,
therefore, the darker the circle, the stronger the
correlation (i.e., closer to -1 or 1). The correlation
coefficients and related hues are shown in the colour
legend on the right side of the correlogram. Strongly
connected bioclimatic variables with Pearson
correlation coefficient values >0.8 and <-0.8 were
removed from the analysis, leaving eight variables
with the least mutual association across the study
area.
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The bioclimatic variables that were retained are:
• bio 1 (Annual Mean Temperature)
• bio 4 (Temperature Seasonality (standard deviation *100))
• bio 5 (Max Temperature of Warmest Month)
• bio 6 (Min Temperature of Coldest Month)
• bio 9 (Mean Temperature of Driest Quarter)
• bio 10 (Mean Temperature of Warmest Quarter)
• bio 12 (Annual Precipitation)

• bio 14 (Precipitation of Driest Month)

Along with eight bioclimatic variables, elevation
layer and soil layer were also used for model building
and validation.

Model building and validation for Trianthema
portulacastrum

Performance score of all models along with
Ensemble approach are given in Table 1 for
comparison. From Table 1, it is clear that the scores
of individual model based on AUC value, ranges from
0.755 (ANN) to 0.849 (RF), whereas TSS value,
ranges from 0.403 (RF) to 0.551 (MARS), and
KAPPA value from 0.421 (MaxEnt) to 0.510 (GLM).
The best performing model based on AUC is RF,
whereas the TSS score is high in case of MARS, and
the high KAPPA statistic in case of GLM. All the
single models outperformed the random models.
However, the Ensemble model gave higher AUC value
(0.872), TSS value (0.606) and Kappa statistic
(0.547) as compared to other models.

Figure 4 shows the response curves of
environmental predictors affecting the prediction of
Ensemble model of Trianthema portulacastrum. As
shown in Table 2, the three most important variables
influencing the model are bio 4 (temperature
seasonality), bio 12 (annual precipitation), and bio 6
(minimum temperature of the coldest month).
Therefore, they are discussed here. It is clear from
the curve that for the growth of T. portulacastrum, it
needs a temperature of at least 5 °C. There is a higher
chance of weed occurrence when temperatures
seasonality is above 450. Weed occurrence is quite
probable in areas with annual precipitation of
approximately 950 mm.

Current distribution pattern of T. portulacastrum
As shown in Figure. 5, major parts of Punjab,

Haryana, and the north-western part of Uttar Pradesh
are classified as highly suitable in the north zone;
states such as Tamil Nadu, Karnataka, Telangana, and

Figure 3. Correlogram- Multicollinearity among environment predictors

Table 1. Performance score of individual models along with
Ensemble model for Trianthema portulacastrum

MODEL AUC TSS KAPPA statistic 
MaxEnt 0.818 0.468 0.421 
RF 0.849 0.403 0.439 
ANN 0.755 0.496 0.422 
MARS 0.846 0.551 0.475 
GLM 0.832 0.537 0.510 
ENSEMBLE  0.872 0.606 0.547 
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Andhra Pradesh are classified as highly suitable in
south zone; and, some parts of western Maharashtra
and coastal areas of Gujarat are classified as highly
suitable in the western zone of India for the growth
of T. portulacastrum.

Future distribution pattern of T. portulacastrum
From Figure 6 and Table 3, it can be found that

T. portulacastrum will undergo significant range
changes under all the future climatic scenarios with a
gain in habitat suitability. Mandal et al. (2017) also
found that T portulacastrum had high acclimatization
capacity and produced more growth under elevated
temperature up to ambient+4°C. In the present study,
it is observed that invasion hotspots for T.
portulacastrum will be shifted towards the south and
east of the country including a few western parts like
Gujarat, in all four future climatic scenarios.

Table 2. Performance of predictor variables used in species distribution modelling of Trianthema portulacastrum

MODEL bio 1 bio 4 bio 5 bio 6 bio 9 bio 10 bio 12 bio 14 Elevation Soil 

MaxEnt 0.4976 0.1930 0.3113 0.0501 0.1293 0.1377 0.3502 0.0647 0.1854 0.0385 

RF 0.0493 0.1288 0.0596 0.0787 0.0622 0.0373 0.1081 0.0217 0.0551 0.0102 

ANN 0.2209 0.0680 0.1063 0.2254 0.0436 0.1402 0.7612 0.2387 0.3723 0.2089 

MARS 0.0000 0.5015 0.0659 0.7478 0.1686 0.0000 0.3750 0.0558 0.0517 0.0000 

GLM 0.2732 0.4995 0.0000 0.8409 0.0000 0.5926 0.1539 0.0784 0.0000 0.0140 

ENSEM-BLE  0.0799 0.2718 0.0542 0.3861 0.0334 0.0438 0.2932 0.0450 0.0312 0.0249 
The most important variables in each model are highlighted in bold

Figure 4. Response curves of environmental predictors affecting the prediction of Ensemble model
for Trianthema portulacastrum

Figure 5. Predicted distribution of Trianthema
portulacastrum in India under current climate
conditions based on Ensemble model
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(a) RCP 4.5 2050 (b) RCP 4.5 2070

(c) RCP 8.5 2050 (d) RCP 8.5 2070

Figure 6. Predicted suitable regions for Trianthema portulacastrum in India under future climatic scenarios based on
Ensemble model

Table 3. Summary of the range change statistics for
the Trianthema portulacastrum under different
climate change scenarios compared to current
climatic conditions

Scenario Loss % Gain % Change % 

RCP 4.5 2050 18.90 53.70 34.80 
RCP 4.5 2070 18.32 61.22 42.90 
RCP 8.5 2050 22.50 50.88 28.38 
RCP 8.5 2070 20.05 74.03 53.97 

Model building and validation for A. conyzoides
Performance score of all models along with

Ensemble approach are given in Table 4 for
comparison. It is clear that the scores of individual
models based on AUC value ranges from 0.774 (ANN)
to 0.837 (MARS), whereas TSS value ranges from
0.441 (MaxEnt) to 0.491 (GLM) and Kappa value from
0.445 (MaxEnt) to 0.512 (RF). The best-performing
model based on AUC is MARS, whereas the TSS score
is high in case of GLM, and Kappa statistic in the case
of RF. All of the single models outperformed the
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Table 5. Performance of predictor variables used in species distribution modelling of Ageratum conyzoides
MODEL bio 1 bio 4 bio 5 bio 6 bio 9 bio 10 bio 12 bio 14 Elevation Soil 
MaxEnt 0.0524 0.3141 0.0184 0.1279 0 0 0.1638 0.0038 0.0069 0.0097 
RF 0.0308 0.1345 0.0570 0.0465 0.0368 0.0407 0.1123 0.0167 0.0307 0.0094 
ANN 0.0890 0.5691 0.0934 0.0424 0.0645 0.0485 0.3875 0.0207 0.0854 0.0660 
MARS 0.0508 0.2687 0.4432 0.9212 0.0518 0 0.0813 0 0.2249 0 
GLM 0 0.3506 0 0 0.2723 0 0.1749 0.0084 0.0544 0.0508 
ENSEMBLE  0.0163 0.1283 0.0543 0.1093 0.0241 0.0050 0.1632 0.0034 0.0276 0.0138 
The most important variables in each model are highlighted in bold.

Figure 7. Response curves of environmental predictors affecting the prediction of Ensemble model for
Ageratum conyzoides

Table 4. Performance score of individual model along
with Ensemble model for Ageratum conyzoides

MODEL AUC TSS Kappa statistic 
MaxEnt 0.809 0.441 0.445 
RF 0.832 0.462 0.512 
ANN 0.774 0.462 0.449 
MARS 0.837 0.483 0.510 
GLM 0.825 0.491 0.479 
ENSEMBLE MODEL 0.840 0.522 0.525 
 
random models. However, Ensemble model gave
higher AUC value (0.840), TSS (0.522) and Kappa
statistic (0.525) as compared to other models.

Table 5 displays the importance of predictor
variables used in A. conyzoides distribution modelling
for each model. The model is predominantly influenced
by predictor variables such as bio 12 (Annual
Precipitation), bio 4 (Temperature Seasonality), and bio
6 (Minimum Temperature of the Coldest Month).

Figure 7 revealed that the A. conyzoides is not a
cold region weed, as its occurrence probability is 0
below 0°C. Arora (1999) found that places with
temperatures ranging from 20–25 °C are best suited
to its growth and development but it also survives
well at 15–30°C. This explains its occurrence at
higher altitudes (i.e., temperate climates) as well as on
the plains (i.e., tropical climates) (Kosaka et al.
2010). Response curves show that as temperature
seasonality increases, its occurrence probability
decreases, indicating it is not tolerant to extreme
temperature variability. It indicates that places with
less difference between highest and lowest
temperature are favourable for this weed. Annual
precipitation of 2000–3700 mm has a high likelihood
of weed occurrence.

Current distribution pattern of A. conyzoides
According to Figure 8, the southern part of

Uttarakhand is classified as a moderately suitable area
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in the north zone; in the south zone, Kerala, coastal
Karnataka, and the northern portion of Andhra
Pradesh are classified as moderately suitable, and in
the eastern zone of India, the coastal regions of
Odisha and West Bengal are classified as highly
suitable for the growth of A. conyzoides. In India’s
north-eastern region, all the states, i.e., Assam,
Sikkim, Nagaland, Meghalaya, Manipur, Mizoram,
and Tripura, come under the moderately to a highly
suitable category, except Arunachal Pradesh, which
comes under the less suitable category.

Future distribution pattern of A. conyzoides
From Figure 9 and Table 6, it can be seen that A.

conyzoides will not undergo significant range changes
under RCP 4.5 for 2050 and 2070 but will experience
significant changes under RCP 8.5 2050 and 2070
predominantly governed by a reduction in habitat

(a) RCP 4.5 2050 (b) RCP 4.5 2070

(c) RCP 8.5 2050 (d) RCP 8.5 2070

Figure 8. Predicted suitable regions of Ageratum
conyzoides in India under current climate
conditions based on Ensemble model

Figure 9. Predicted suitable regions Ageratum conyzoides in India under future climatic scenarios based on ensemble model
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suitability for weeds. It is observed that invasion
hotspots for A. conyzoides will be completely shifted
towards north- eastern side of the country.

Conclusion
The study highlights the potential impact of

climate change on the distribution of Trianthema
portulacastrum and Ageratum conyzoides in India
under present and future climatic conditions. The
significant contribution of bioclimatic variables such as
temperature seasonality, annual mean temperature, and
minimum temperature of the coldest month was found
to govern the potential distribution of T. portulacastrum
and A. conyzoides. Suitable regions for T.
portulacastrum are predicted to increase under RCP
4.5 and 8.5 for the years 2050 and 2070, whereas for
Ageratum conyzoides, suitable regions in India will not
undergo significant range change under RCP 4.5 but
will decrease under RCP 8.5 for the years 2050 and
2070. This study can aid in the management of weeds
in the potentially identified areas as hotspots in climate
change, and the findings could be utilised as a
preventative strategy to establish early detection and
rapid reaction or to develop one if none currently
exists. Ensemble modelling was used here and is
certainly reliable in estimating species distributions, and
it is useful in biodiversity planning and management.
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Scenario Loss % Gain % Change % 
RCP 4.5 2050 27.211 29.096 1.885 
RCP 4.5 2070 31.128 28.32 -2.808 
RCP 8.5 2050 36.342 17.275 -19.067 
RCP 8.5 2070 57.397 15.668 -41.73 

 


