

Weed flora of raised bunds and undulated lands growing along the rice fields of Kashmir Valley

Aijaz Hassan Ganie*, Anzar A. Khuroo¹, Bilal A. Tali², Zafar A. Reshi² and B.A. Wafai²

Department of Botany, University of Kashmir, Kargil Campus 194 105

Received: 16 July 2016; Revised: 28 September 2016

ABSTRACT

For an effective weed management in the rice fields, it is crucial to identify the actual weeds as well as those growing on the raised bunds and undulated lands nearby rice fields. The present study was carried out with this aim to record the weeds growing on bunds and nearby undulated lands of the rice fields in Kashmir Valley, so that not only the actual weeds inside the rice field but also the nearby growing weed species that may pose future risk could also be targeted under the weed management practices. During the present study, 58 weed species belonging to 45 genera and 27 families were recorded along raised bunds and undulated lands of rice fields in Kashmir Valley. Of these, 38 weed species were terrestrial and 20 were semi-aquatic species; and it is the latter set of species that can become the future weeds of rice fields in the region.

Key words: Bund weeds, Management, Semi-aquatic, Terrestrial, Weed flora

Rice (*Oryza sativa*) is one of the top most cereal crops providing food for more than half of world's human population (Kumar *et al.* 2008, Mulungu *et al.* 2011). Being staple food for more than 3 billion people across the world, rice provides 50-80 per cent daily calorie intake (Choudhary *et al.* 2011). Throughout the world, India is the second largest producer of rice after China; and rice is the second most important crop in India (Savary *et al.* 2005). The crop plays a pivotal role in the economy of India and thus occupies top priority in the agricultural policy and food security of the country (Dangwal *et al.* 2011).

Uncontrolled infestation by obnoxious weeds is a serious problem for rice cultivation, and there are estimates that weeds incur an annual rice yield loss of 15-21% worldwide (Oerke *et al.* 1994). In fact, out of total losses incurred to rice due to various biotic stressors, weeds are known to account for one-third (Rao and Nagamani 2007). It has been estimated that infestation of weeds in rice fields reduces the grain yield by 75.8, 70.6 and 62.6% in dry seeded rice, wet seeded rice and transplanted rice, respectively (Singh *et al.* 2005).

In the Kashmir Valley, rice is regarded to be more than just the staple food, and it finds its way in local parlance for the word: "meal" (Ganie *et al.* 2015). A relatively small area of about 0.27 million hectares of land are under rice cultivation in the regional economy (Ganie *et al.* 2015). Although the rice is crucially linked to the livelihood of local inhabitants in the Kashmir Valley, yet the yield loss incurred due to infestation of various weeds is one of the major problems in the region. It is in this backdrop the present study was undertaken to identify and document the weed species growing along raised bunds and on undulated lands of rice fields across the Kashmir Valley with an emphasis on taxonomic diversity, habit, occurrence and life span, which in turn, can provide useful insights in the development of effective weed management practices.

MATERIALS AND METHODS

Field surveys were conducted across the Kashmir Valley to identify weeds growing along raised bunds and in between undulated lands of rice fields during 2010-2014, in the months of April to October. Being situated in northern fringe of the Indian sub-continent, the Valley lies between 33°22' and 34°50' N latitudes and 73°55' and 73°33' E longitudes covering an area of about 16,000 sq. km. During the present study, 3 sites from each district with 10 spots at each site of Kashmir Valley have been selected to record the weed flora. Field surveys were conducted twice a month in each site for collection of weed species specimens. The collected plant specimens were pressed, dried, preserved and properly identified with the help of available literature

^{*}Corresponding author: aijazku@gmail.com

¹Centre for Biodiversity & Taxonomy, University of Kashmir

²Department of Botany, University of Kashmir, Srinagar – 190 006, J&K

(Hooker 1894, Stewart 1972, Cook 1995). The properly processed herbarium specimens were deposited at Kashmir University Herbarium (KASH) for future voucher specimens.

RESULTS AND DISCUSSION

Fifty eight weed species growing along raised bunds and in between undulated lands of rice fields across the Kashmir Valley were recorded (Table 1). These species belong to 45 genera in 27 families; of the latter, 23 belong to dicotyledons and 4 to monocotyledons. Habit-wise, study showed that 20 species were aquatic/semi-aquatic and 38 were terrestrial. Based on the occurrence, most of the weed species grew on both the raised bunds and undulated lands. Although rice is an annual crop, however majority of the weeds recorded were perennials (37 species), followed by 19 annual and 2 biennial species. In addition to 40 weed species previously reported by Ganie et al. (2015) as the actual weed species that grow inside beds in the rice fields of Kashmir Valley, one more species namely

Butomus umbellatus L. has also been recently recorded as weed of rice fields at various places in the Valley. Based on this observation, it was predicted that among the 20 aquatic/semi-aquatic species recorded during the present study which currently are still growing along margins of rice fields can become potential future weed species of the rice crop in the region.

From weed management point of view, correct taxonomic identification and the identification of potential habitats that serve as pathway for the weed species assumes first and foremost priority. Therefore, the present study recommends that, in addition to the actual weeds of the rice crop which are primary target, the weed management practices should also focus on potential weed species that inhabit side-by habitats in rice fields, such as raised bunds, undulated lands *etc*, which may pose risk in future. Such an informed early prediction protocol for future weed species need to be integrated in the overall weed management, because the chances of weed control are maximal at this stage of infestation.

Table 1.	Weed s	pecies §	erowing o	n raised	bunds	/or in	betwee	n undulat	ed land	s of ric	e fields ir	ı Kashmi	r Vallev
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								

Plant species	Family	Habit	Occurrence	Life span
Achillea millefolium L.	Asteraceae	Terrestrial	RB and UL	Perennial
Cichorium intybus L.	Asteraceae	Terrestrial	RB and UL	Perennial
Conyza canadensis (L.) Cronq.	Asteraceae	Terrestrial	RB and UL	Annual
Galinsoga parviflora Cav.	Asteraceae	Terrestrial	RB and UL	Annual
Senecio chrysanthemoides DC.	Asteraceae	Terrestrial	RB and UL	Perennial
Sonchus arvensis L.	Asteraceae	Terrestrial	RB and UL	Perennial
Sonchus oleraceus L.	Asteraceae	Terrestrial	RB and UL	Biennial
Tagetes erecta L.	Asteraceae	Terrestrial	RB and UL	Annual
Tagetes minuta L.	Asteraceae	Terrestrial	RB and UL	Annual
Tagetes patula L.	Asteraceae	Terrestrial	RB and UL	Annual
Xanthium strumarium L.	Asteraceae	Terrestrial	RB and UL	Annual
Myosotis caespitosa Schultz	Boraginaceae	Terrestrial	RB and UL	Perennial
Capsella bursa-pastoris (L.) Medic.	Brassicaceae	Terrestrial	RB and UL	Annual
Rorippa indica (L.) Hiern	Brassicaceae	Semi-aquatic	UL	Annual
Nasturtium officinale L.	Brassicaceae	Aquatic	UL	Perennial
Thlaspi arvense L.	Brassicaceae	Terrestrial	RB and UL	Annual
Cannabis sativa L.	Cannabaceae	Terrestrial	RB and UL	Annual
Chenopodium album L.	Chenopodiaceae	Terrestrial	RB and UL	Annual
Convolvulus arvensis L.	Convolvulaceae	Terrestrial	RB and UL	Perennial
Euphorbia prostrata Ait.	Euphorbiaceae	Terrestrial	RB and UL	Annual
Lathyrus aphaca L.	Fabaceae	Terrestrial	RB and UL	Annual
Trifolium pratense L.	Fabaceae	Terrestrial	RB and UL	Perennial
Trifolium repens L.	Fabaceae	Terrestrial	RB and UL	Perennial
Vicia sativa L.	Fabaceae	Terrestrial	RB and UL	Annual
Medicago lupulina L.	Fabaceae	Terrestrial	RB and UL	Perennial
Geranium nepalense Sweet	Geraniaceae	Terrestrial	RB and UL	Perennial
Myriophyllum spicatum L.	Haloragaceae	Aquatic	UL	Perennial
Ocimum basilicum L.	Lamiaceae	Terrestrial	RB and UL	Perennial
Prunella vulgaris L.	Lamiaceae	Terrestrial	RB and UL	Perennial
Scutellaria discolor Colebr.	Lamiaceae	Terrestrial	RB and UL	Perennial
Scutellaria galericulata L.	Lamiaceae	Semi-aquatic	RB and UL	Perennial
Lythrum salicaria L.	Lythraceae	Aquatic	UL	Perennial

Plant species	Family	Habit	Occurrence	Life span
Nelumbo nucifera Gaertn.	Nelumbonaceae	Aquatic	UL	Perennial
Epilobium hirsutum L.	Onagraceae	Semi-aquatic	UL	Perennial
Oenothera drummondii Hook. F	Onagraceae	Semi-aquatic	UL	Perennial
Spiranthes sinensis (Pers.) Ames	Orchidaceae	Semi-aquatic	UL	Perennial
Oxalis corniculata L.	Oxalidaceae	Terrestrial	RB and UL	Perennial
Plantago lanceolata L.	Plantaginaceae	Terrestrial	RB and UL	Perennial
Plantago major L.	Plantaginaceae	Terrestrial	RB and UL	Perennial
Cynodon dactylon (L.) Pers.	Poaceae	Terrestrial	RB and UL	Perennial
Poa angustifolia L.	Poaceae	Terrestrial	RB and UL	Perennial
Poa annua L.	Poaceae	Terrestrial	RB and UL	Annual
Poa pratensis L.	Poaceae	Terrestrial	RB and UL	Perennial
Persicaria amphibium (L.) Delarbe	Polygonaceae	Aquatic	UL	Perennial
Persicaria nepalensis (Meisn) Miyabe	Polygonaceae	Aquatic	UL	Annual
Persicaria lapathifolium (L.) Delarbe	Polygonaceae	Semi-aquatic	UL	Annual
Rumex dentatus L.	Polygonaceae	Semi-aquatic	UL	Perennial
Rumex nepalensis Spreng	Polygonaceae	Semi-aquatic	UL	Perennial
Portulaca oleracea L.	Portulacaceae	Terrestrial	UL	
Stuckenia pectinata (L.) Börner	Potamogetonaceae	Aquatic	UL	Perennial
Potamogeton crispus L.	Potamogetonaceae	Aquatic	UL	Biennial
Ranunculus sceleratus L.	Ranunculaceae	Semi-aquatic	UL	Perennial
Rubia cordifolia L.	Rubiaceae	Terrestrial	RB and UL	Perennial
Veronica anagallis-aquatica L.	Scrophulariaceae	Semi-aquatic	UL	Perennial
Veronica beccabunga L.	Scrophulariaceae	Semi-aquatic	UL	Perennial
Solanum americanum Mill.	Solanaceae	Terrestrial	RB and UL	Annual
Typha angustifolia L.	Typhaceae	Aquatic	UL	Perennial
Tribulus terrestris L.	Zygophyllaceae	Terrestrial	RB and UL	Annual

RB= Raised Bunds; UL= Undulated Land

ACKNOWLEDGMENTS

We are highly thankful to the Head, Department of Botany, University of Kashmir, Srinagar, for providing necessary facilities.

REFERENCES

- Choudhary N, Ahuja U, Chawala V, Jain RK, Kumari P and Batan KR. 2011. Morphological and molecular variability in weedy rice of Haryana. *Asian Journal of Agriculture Research* 5: 250 -259.
- Cook CDK. 1995. Aquatic and Wetland Plants of India. Oxford University Press
- Dangwal LR, Singh A, Singh T and Sharma A. 2010. Effects of weeds on the yield of maize crop in tehsil Nowsera. *International Journal of Current Research* 3: 69-70.
- Ganie AH, Tali BA, Khuroo AA, Reshi ZA and Wafai BA. 2015. Taxonomic diversity, distribution pattern and management implications of weed flora in rice fields of Kashmir Valley. *Indian Journal of Weed Science* **47**(1): 11–15.
- Hooker JD. 1894. *Flora of British India*. Vol. VI.L Reeve and Co. London.
- Kumar GS, Rajarajan A, Thavaprakash N, Babu C and Umashankar R. 2008. Nitrogen use efficiency of rice (Oryaza sativa) in systems of cultivation with varied n

level ¹⁵ N tracer technique. *Asian Journal of Agriculture Research* **2:** 37 -40.

- Mulungu LS, Jilala MR, Mwatawala MW and Mwalilino JK. 2011. Assessment of damage due to large grain borer (*Prostephanus truncates* Horn) on stored paddy rice (*Oryaza sativa* L. Poaceae). Journal of Entomology 8: 295-300.
- Oerke EC, Dehnf HW, Schonbeck F and Webwe A. 1994. Crop Production and Crop Protection Estimated Losses in Major Food and Cash Crop, Elsevier, Amsterdam, 808 p.
- Raoa N and Nagamani A. 2007. Available technologies and future research challenges for managing weeds in dry seeded rice in India. In: *Proceeding of the 21st Asian Pacific Weed Science Society Conference* 2 to 6th October, Colombo, Sri Lanka.
- Savary S, Castilla NP, Elazegui FA and Teng PS. 2005. Multiple effects of two drivers of agricultural change, labour shortage and water scarcity on rice pest profiles in tropical Asia. *Field Crop Res*earch **91**: 263-271.
- Singh S, Singh G, Singh VP and Singh AP. 2005. Effect of establishment methods and weed management practices on weeds and rice in rice-wheat cropping system. *Indian Journal of Weed Science* 37: 51-57.
- Stewart RR. 1972. An Annotated Catalogue of the Vascular Plants of West Pakistan and Kashmir. Fakhri Printing Press, Karachi, Pakistan.