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ABSTRACT

Simulation models have been instrumental in understanding the evolutionary dynamics of herbicide
resistance in weeds and making informed management decisions for preventing/delaying resistance.
Continued improvements in model development and analysis will be critical to address the complex
interactions involved in herbicide resistance evolution Here we review current knowledge on the
development of herbicide resistance simulation models using published examples and also discuss

future directions.
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Simulation models have long been employed to
understand weed population dynamics and changes
to vital rates in response to crop and weed
management practices (Holst et al. 2007). Their
utility has been further extended to gain a deeper
understanding of herbicide resistance evolution in
weed communities and devise effective resistance
management strategies (e.g., Maxwell et al. 1990,
Maxwell and Mortimer 1994, Diggle et al. 2003,
Neve et al. 2011). Simulation models save
tremendous amount of time and resources, which
would otherwise be spent on conducting long-term
field experiments, which are often impracticable. A
prime benefit of using simulation models is that they
allow for the comparison of various management
options and evaluate the relative benefits of different
management combinations in reducing the risk of
resistance (Jasieniuk et al. 1996, Cavan et al. 2000).
For instance, Bagavathiannan et al. (2013) used a
model to compare the relative benefits of altered
planting dates, cultivation, crop/trait rotations, and
herbicide rotations in proactive herbicide resistance
management in barnyardgrass (Echinochloa crus-
galli (L.) Beauv.). Thus, models can serve as
excellent decision-support tools for growers and
weed managers for making informed management
decisions.
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Model components

The evolution of herbicide resistance is
influenced by three key factors: (1) factors related to
the ecology and biology of the weed species, (2)
genetic factors governing the rate of resistance
evolution, and (3) management factors. Therefore,
models that simulate herbicide resistance evolution
are comprised of three integral components - ecology
and biology, population genetics, and management
(Diggle et al. 2003, Roux and Reboud 2007). A
general framework of a herbicide resistance
simulation model for an annual weed species is
presented in (Figure 1). The processes on ecology
and biology is usually represented by a demographic
sub-model, which accounts for initial seedbank size,
annual germination proportion, seedling recruitment
pattern, density-dependent survival and fecundity,
post-dispersal seed loss, and seed immigration/
emigration. The genetic processes include initial
frequency of resistance alleles, mode of inheritance
of resistance, mating system, dominance, and fitness.
Management is a critical factor determining
resistance evolution, particularly the combinations of
management options used and efficacies of different
options.

Roux and Reboud (2007) suggested that genetic
factors are important for a highly outcrossing
species, whereas management is important for a
predominantly selfing species in influencing
resistance dynamics. Further, the intrinsic population
dynamics, particularly seedbank persistence
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(Mortimer et al. 1992) and fitness (Vila-Aiub et al.
2009) can greatly influence resistance. The
significance of ecological fitness and gene flow in
governing the evolution and dynamics of herbicide
resistance was demonstrated by Maxwell et al.
(1990). Model sensitivity analysis is used to identify
the prime parameters that influence model dynamics.
Some notable ones for which the models were found
to be highly sensitive include initial seedbank density,
initial frequency of resistance alleles, proportion of
seedling recruitment, post-dispersal seed loss, and
annual seedbank loss (Neve et al. 2011,
Bagavathiannan et al. 2013). Model analysis revealed
that the likelihood for resistance evolution is low
under low initial seedbank size, low initial frequency
of resistance alleles, low levels of seedling
recruitment, high post-dispersal seed loss, and high
annual seedbank loss (Fig. 2). Stochasticity is often
included in the models to account for likely spatial and
temporal variations in parameter values across
different production fields and years. Diggle and
Neve (2001) outlined the specifics of herbicide
resistance simulation modeling and the applications
and limitations of various methodologies used in
model development.

Examples of model applications

Herbicide resistance simulation models are
broadly grouped into simplified major-gene based
models, models simulating polygenic resistance
evolution, models accounting for spatial
heterogeneity in resistance evolution and spread (i.e.
spatially explicit models), and models used as
education and extension tools.

Simplified major-gene-based models: In a pionee-
ring research, Gressel and Segel (1978) used a simple
population model in an attempt to identify important
factors that influence the evolution of herbicide
resistance. They used the model to illustrate the
evolution of resistance under conditions of
monoculture and/or single herbicide usage. In
subsequent research, Gressel and Segel (1990)
modeled the effectiveness of herbicide rotations and
mixtures for managing resistance. Maxwell et al.
(1990) used a population model to predict the
evolution, spread, and dynamics of resistant and
susceptible weed genotypes and found that resistance
could evolve rapidly under repeated herbicide
applications in the absence of a nearby susceptible
source population. Gorddard et al. 1995) adopted the
resistance simulation model developed by Maxwell et
al. (1990) and developed an optimal control model for
weed management under herbicide resistance, with a
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goal of finding an economic balance between ongoing
control of susceptible weeds and future likelihood for
resistance evolution.

Mortimer et al. (1992) assessed the fitness of
susceptible and resistant biotypes of blackgrass
(Alopecurus myosuroides Huds.) under different
herbicide selection regimes and tested their impacts
on resistance. They emphasized that the interaction
between density-dependent and density-independent
regulations was a critical factor in controlling the
frequency of resistance alleles. Using a simple model,
Jasieniuk et al. (1996) compared the rates of
resistance evolution under various mutation rates,
management efficacies, and levels of outcrossing.
Cavan et al. (2000) investigated the effect of
cultivation regimes, herbicide factors (rotations and
kill rate), initial frequency of resistance alleles, and
initial seedbank density on the number of years taken
for the evolution of target-site resistance for
aryloxyphenoxypropionate (AOPP) and cyclohex-
anedione (CHD) herbicides in blackgrass. The
authors developed a subsequent model (Cavan et al.
2001) for predicting and managing the risks of
resistance evolution for AOPP and CHD herbicides in
wild oat (Avena fatua L.). Hanson et al. (2002)
developed a quantitative model to simulate the
evolution of imazamox resistance in jointed goatgrass
(Aegilops cylindrical Host) in imazamox-resistant
wheat (Triticum aestivum L.) production in the
Pacific Northwest, specifically assessing the impacts
of different agronomic practices on the evolution and
persistence of resistance in this species.

Gustafson (2008) developed a herbicide
resistance modeling system (HERMES) to explore the
sustainability of glyphosate in glyphosate-resistant
cropping systems. Results suggested that prudent use
of additional herbicides are necessary to sustain the
utility of glyphosate in North American cropping
systems. Werth et al. (2008) used a simulation model
for guiding the development of a robust crop
management plan for minimizing the risk of
glyphosate-resistance evolution in some of the major
weeds present in Australian glyphosate-resistant
cotton production systems. Thornby and Walker
(2009) developed a model for predicting the evolution
of glyphosate resistance in awnless barnyardgrass/
junglerice (Echinochloa colona (L.) Link) in
Northern Australian sub-tropical grains farming
region and examined the rate of resistance evolution
under a range of key model parameters and under
conditions expected to result in high selection
pressure.



Muthukumar V. Bagavathiannan and Jason K. Norsworthy

Jacquemin et al. (2009) modeled the effect of
herbicide mixtures on the evolutionary dynamics of a
weed population in which resistance has already
occurred for one of the modes of action (MOAS)
used in the mixture. Their findings illustrated that use
of herbicide mixtures as a resistance management
strategy is inadequate if resistance has already been
detected in that population. Neve et al. (2011)
investigated various herbicide use strategies
(herbicide mixtures and rotations) applied at various
timings to identify effective management options for
mitigating the risk of glyphosate resistance evolution
in Palmer amaranth (Amaranthus palmeri S. Wats) in
the midsouthern US cotton production system.
Richter et al. (2012) developed an evolutionary
genetic model, using the joint evolutionary dynamics
model of Huillet and Martinez (2011), for
understanding the evolution and dynamics of
metabolic (monogenic) resistance under field
conditions.

Models have also evaluated the risk of multiple
herbicide resistance evolution conferred by more than
one unlinked major gene. Diggle et al. (2003)
modeled the risk of multiple resistance evolution
conferred by two discrete, unlinked nuclear genes in
a finite weed population. They compared the
effectiveness of herbicide mixtures and annual
herbicide rotations and concluded that herbicide
mixtures (or combinations) rather than annual
rotations can greatly delay resistance evolution.
Bagavathiannan et al. (2014a) predicted the risk of
simultaneous and independent evolution of resistance
to more than one resistance trait (resistance to the
acetolactate synthase (ALS) and acetyl-CoA
carboxylase (ACCase) inhibitors) in barnyardgrass in
mid Southern US rice production. Results illustrated
the value of combining multiple effective MOAs
(three or more) in minimizing the risk of resistance in
this species.

Single-gene based models were also used for
risk assessment of transgenic herbicide-resistant
crop lines. For instance, Madsen et al. (2002)
employed a simulation model to understand the risk of
glufosinate resistance evolution in weedy rice (Oryza
sativa L.) in glufosinate-resistant rice production in
Latin America.

Models concerned with polygenic resistance: The
majority of the existing models are concerned with
single major genes, but polygenic resistance is also
likely to occur depending on the nature of
management regime followed. Gardner et al. (1998)
modeled strategies for preventing both single-gene
based and polygenic resistance and recommended
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that a revolving dose strategy (i.e., dosage rotation)
can be effective in delaying resistance evolution to
both modes compared to successive applications of
constant doses. Renton (2009) developed the PERTH
model (Polygenic Evolution of Resistance To
Herbicides), an individual-based simulation model for
demonstrating the polygenic basis of resistance
evolution in annual ryegrass (Lolium rigidum Gaud.)
under low herbicide doses. Manalil et al. (2012)
utilized the PERTH model along with data collected
from field study for identification of the resistance
mechanism in a ryegrass population selected under
low-dose applications and found that resistance was
polygenic.

Spatially explicit models: Most models developed
so far predict resistance under homogeneous
environments. However, production fields are
typically heterogeneous and resistance evolution and
spread largely occurs at spatially heterogeneous
patterns. A small number of models have been
developed by accounting for the movement of
propagules (i.e., gene flow) in a heterogenous spatial
scale. Using a spatio-temporal model, Richter et al.
(2002) modeled the spread of herbicide resistance in a
hypothetical grass weed and suggested that spatial
spread of resistance could be minimized by
maintaining untreated strips between adjacent
production fields. Roux and Reboud (2007) used a
model to understand herbicide resistance dynamics in
a spatially heterogeneous environment by accounting
for the presence of favorable and unfavorable areas
across a cultivated landscape. The model outputs
indicated that resistance dynamics is governed by
interactions among various factors, some of which
are not controlled by human and are spatially variable.
Liu et al. (2010) modeled the spatial spread of
glyphosate-resistant ~ common  waterhemp
(Amaranthus rudis Sauer.) in the US Midwest. With
maximum wind speeds of 10 m/s, the model predicts
resistance movement for less than 20 km in four
years. When comparing model outputs with field
observations, the authors concluded that factors
other than wind (such as movement of farm
equipment) may play an important role in the long-
distance spread of resistance. Rummland et al.
(2012) predicted the spatial distribution of resistant
loose silkybent (Apera spica-venti (L.) P. Beauv.)
plants spreading across a production field, by
simulating random seed distribution and gene flow
using a cellular automation process.

Models as educational tools: Besides their use as
research tools, models can also serve as excellent
educational tools in transferring research knowledge
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to growers. These models do not necessarily simulate
or predict resistance, but test various combinations of
strategies on long-term weed seedbanks and
economics, with direct relevance to herbicide
resistance management. They tremendously help the
extension personnel demonstrate to the clients the
benefits of adopting or the penalties of not adopting a
given resistance management practice. In fact,
growers and crop consultants can themselves use
such models to evaluate and compare various weed
management strategies on the long-term sustainability
and profitability of farming operations. Rainbolt et al.
(2004) modified a general life cycle model into an
extension teaching tool to demonstrate the effects of
weed biology factors and crop rotation on resistance
evolution in a number of major weed species in the
Pacific Northwest dryland wheat-based cropping
systems. Stanton et al. (2008) developed a risk
calculator to enable farmers and crop advisors assess
the risk of glyphosate resistance evolution in annual
ryegrass in Australia. Another notable example is the
ryegrass integrated management (RIM) model,
widely adopted in the Australian Southern grainbelt
(Pannell et al. 2004, Lacoste and Powles 2014). The
original RIM model was adapted to other weed
species, notably RIMPhil for barnyardgrass (Beltran
et al. 2011), RIM for wild radish (Raphanus
raphanistrum L.) (Monjardino et al. 2003), PIM for
poppy (Papaver rhoeas L.) (Torra et al. 2010), and
PAM for Palmer amaranth (Bagavathiannan et al.
2014b). The RIM model has also served as the basis
for ‘weed seed wizard’, a more advanced user-
oriented software model for guiding Best
Management Practices for herbicide resistance
management in Australia (Renton et al. 2007).

Challenges and limitations

Simulation models as both research and
educational tools have been greatly assisting the
development and transfer of valuable knowledge, but
there are some limitations and challenges to the
development and application of models for resistance
management. A prime limitation is the lack of specific
data for parameter estimation. Rapid progress has
been made over this past decade in collecting
necessary biological and management data for
supporting model developments, but there is still a
long way to go in amassing a comprehensive
knowledge base. Specifically, details on mutation
rates, initial frequency of resistance alleles, genetic
basis of resistance, fitness costs associated with
resistance alleles, seedbank dynamics, patterns of
gene flow, and metapopulation dynamics within
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agricultural landscapes is yet to be accumulated. The
current models rely heavily on simplifying
assumptions and expert opinions in generating
predictions. Furthermore, most of the existing
resistance simulation models are deterministic (do not
account for environmental and demographic
stochasticity) and spatially implicit (assume that the
production fields are homogeneous). As a result,
there are uncertainties on the accuracy of model
predictions. Yet, models remain valuable as the best
available tool in understanding system behavior, given
the limited inherent knowledge of the system. The
models will gradually become more robust as more
relevant data are continued to be collected.

A model requires validation in order to secure
trust among users. Validation can be replicative,
predictive or structural (Zeigler 1985, Troitzsch
2004). Replicative and predictive validation deals
with match between model predictions and data
already acquired or to be acquired from the real
system, respectively. Structural validation, however,
deals with reproducing real system behavior in a way
that the system functions to produce the behavior.
Model validation typically presents practical
challenges due to the hidden weed population and
farming system variables (Rykiel 1996, Thornby and
Walker 2009). Moreover, timely validation is critical
to make useful decisions for preventing resistance
before it is too late. Direct empirical validation from
field evidence has been used as a convenient way for
model validation in some situations (Neve et al. 2011,
Bagavathiannan et al. 2014a). Even then required
information from such field evidences are extremely
difficult to obtain because details are recorded only
after resistance is noticed, but the field management
history over the life of the system is rarely
documented (Thornby and Walker 2009). Thus,
empirical field validations may be useful, but not
adequate.

A number of alternative approaches have been
proposed to validate the models. Barlas (1996)
suggested that model validations should be based on
verification of model structure and output patterns
rather than its predictive accuracy. Balci (1995)
outlined 15 principles for model validation,
emphasizing that it is unreasonable to expect perfect
representation of the system since models are only an
abstraction of the system in question. Balci (1995)
further argued that validation is not a binary variable
(correct or incorrect), but is a test of the degree of
model credibility and judgment on the model
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sufficiency for specific applications. Expert
knowledge test of model structure was also suggested
as a way of validating the model throughout the course
of its development (Thornby et al. 2009). Although
some of the validation approaches noted above may
not be ideal, the shortfall should be weighed against
the value of the model as a decision-support tool in
making timely management decisions.
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